
Central role of the LEAFY COTYLEDON1
transcription factor in seed developmentFA

Leonardo Jo, Julie M. Pelletier and John J. Harada*

Department of Plant Biology and Plant Biology Graduate Group, University of California, Davis, USA
doi: 10.1111/jipb.12806

John J. Harada

*Correspondence:
jjharada@ucdavis.edu

Abstract Seed development is a complex period of the
flowering plant life cycle. After fertilization, the three main
regions of the seed, embryo, endosperm and seed coat,
undergo a series of developmental processes that result in
the production of a mature seed that is developmentally
arrested, desiccated, and metabolically quiescent. These
processes are highly coordinated, both temporally and
spatially, to ensure the proper growth and development of
the seed. The transcription factor, LEAFY COTYLEDON1

(LEC1), is a central regulator that controls several aspects of
embryo and endosperm development, including embryo
morphogenesis, photosynthesis, and storage reserve accu-
mulation. Thus, LEC1 regulates distinct sets of genes at
different stages of seed development. Despite its critical
importance for seed development, an understanding of the
mechanisms underlying LEC1’s multifunctionality is only
beginning to be obtained. Recent studies describe the roles
of specific transcription factors and the hormones,
gibberellic acid and abscisic acid, in controlling the activity
and transcriptional specificity of LEC1 across seed develop-
ment.Moreover, studies indicate that LEC1 acts as a pioneer
transcription factor to promote epigenetic reprogramming
during embryogenesis. In this review, we discuss the
mechanisms that enable LEC1 to serve as a central regulator
of seed development.
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INTRICACIES OF SEED DEVELOPMENT

Overview of seed development
Seed development is a complex period of the

flowering plant life cycle. As shown in Figure 1, the

seed consists of three different regions, each with a

distinct variation on a common genotype: diploid and

filial embryo, triploid and filial endosperm, and diploid

and maternal seed coat. Moreover, each region is

comprised of distinct subregions, tissues, and cell

types.
Seed development begins with the double fertiliza-

tion of the egg and central cells of the embryo sac with
two sperm cells that generate the embryo and
endosperm, respectively (Goldberg et al. 1994).

Fertilization also initiates seed coat development
(Roszak and Kohler 2011).

Embryo and endosperm development can be
divided temporally into two distinct phases: the
morphogenesis phase, which is initiated immediately
after fertilization, and the maturation phase, which
partially overlaps and follows the morphogenesis phase
(Figure 1). Themorphogenesis phase is characterized by
cell proliferation and differentiation that occur in both
the embryo and endosperm. During this phase, the
shoot and root apical meristems of the embryo are
formed to set up the apical � basal plant axis, and
the protoderm, ground meristem, and procambium
develop as the tissue system progenitors that consti-
tute the embryo’s radial axis (reviewed by Lau et al.
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2012; Palovaara et al. 2016). This basic body pattern
which is established during embryogenesis is main-
tained throughout the sporophytic life cycle of the
plant. The endosperm undergoes nuclear and cell
proliferation, regionalization, and cell differentiation
during the morphogenesis phase, and it develops
into tissues that will provide nutrients for the develop-
ing embryo and/or postgerminative seedling (Li and
Berger 2012).

By contrast, the maturation phase represents an
interruption of the patterning, proliferation, and
differentiation events that occur during the morpho-
genesis phase and that are reinitiated during seedling
and vegetative development (Raz et al. 2001; Vicente-
Carbajosa and Carbonero 2004). The maturation phase
is characterized by the synthesis and massive accumu-
lation of storage compounds, such as seed storage
lipids and proteins (Harada 1997; Gutierrez et al. 2007;
Baud et al. 2008). Storage compound accumulation
results in cell expansion and a considerable increase in
embryo cell size. It is also during the maturation phase
that the embryo acquires the ability to survive
desiccation that occurs at the latest stage of seed
development through the accumulation of disacchar-
ides, oligosaccharides, storage proteins, and late
embryogenesis abundant proteins that preserve the
integrity of membranes, proteins, and nucleic acids in

the desiccated state (Angelovici et al. 2010; Leprince
et al. 2017). Germination of the developing embryo is
actively inhibited during the maturation phase, initially
through accumulation of the hormone abscisic acid
(ABA) and later through a reduction in water content
(Kermode 1990). At the end of the maturation phase,
the embryo and endosperm are developmentally
arrested and metabolically quiescent, and they are
typically maintained in this state until conditions
favorable for germination are encountered.

Gene networks in seed development
The complexity of seed development suggests that the

cellular processes that underlie specific seed functions

must be highly coordinated both temporally and

spatially. The onset and termination of these processes

are controlled largely by changes in gene expression

patterns. Therefore, understanding the mechanisms

that control gene expression could aid in the develop-

ment of strategies that can be used to modify the

processes that occur during seed development and,

potentially, improve seed quality in many important

crop species.
The mRNA profiles of whole seeds and/or seed

regions and subregions at different stages of develop-
ment in several plant species have provided fundamen-
tal insights into the processes and regulatory

Figure 1. Overview of the major biological events that occur during seed development
Seed images diagram Arabidopsis seeds at the indicated stages and days after pollination (DAP). Bars indicate the
morphogenesis and maturation phases and the major cellular processes that occur in embryos and endosperm.
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mechanisms that control seed development (Le et al.
2007; Benedito et al. 2008; Verdier and Thompson 2008;
Xiang et al. 2011; Chen et al. 2012; Harada and Pelletier
2012; Belmonte et al. 2013; Terrasson et al. 2013; Becker
et al. 2014; Chen et al. 2014; Khan et al. 2014; Li et al.
2014; Pradhan et al. 2014; Aghamirzaie et al. 2015;
Gonzalez-Morales et al. 2016; Huang et al. 2017; Rangan
et al. 2017). Gene expression patterns reflect spatial
differences in seed regions and subregions and temporal
differences in developmental stages. However, themost
conspicuous change is a major reprogramming of gene
expression that occurs in the embryo and endosperm

during the transition between the morphogenesis and

maturation phase of seed development (Verdier et al.
2008; Severin et al. 2010; Xianget al. 2011; Chenet al. 2012;

Belmonte et al. 2013; Chen et al. 2014). Many genes

involved in patterning and morphological differentiation
processes are preferentially expressed during the

morphogenesis phase, whereas genes that are involved

with seed storage macromolecule accumulation and
desiccation tolerance are activated at the onset of the

maturation phase. Although some aspects of gene

expression are regulated posttranscriptionally in seeds
(D’Ario et al. 2017), these findings suggest that

transcriptional control mechanisms play major roles in

regulating seed development.

An introduction to LEAFY COTYLEDON1
Many transcription factors have been shown to regulate
biological processes during seed development (re-
viewed by Le et al. 2007; Verdier and Thompson 2008;
Le et al. 2010; Jia et al. 2014; Pradhan et al. 2014; Baud
et al. 2016; Devic and Roscoe 2016). Among these
transcription factors, LEAFY COTYLEDON1 (LEC1) has
been identified as a key, central regulator of seed
development (Meinke 1992; Meinke et al. 1994; West
et al. 1994; Lotan et al. 1998; Harada 2001; To et al. 2006;
Braybrook and Harada 2008; Pelletier et al. 2017). LEC1
is a novel subunit of the nuclear factor Y (NF-Y) transcrip-
tion factor that accumulates primarily in the embryo and
endosperm, specifically during seed development
(Figure 2A) (Lotan et al. 1998; Calvenzani et al. 2012;
Gnesutta et al. 2017b). Although LEC1 has long been
considered to be a central regulator of seed develop-
ment, we are only beginning to understand the
mechanisms by which LEC1 controls several aspects of
seeddevelopment, including thebiosynthesis of storage
macromolecules, desiccation tolerance, photosynthesis,

and hormonebiosynthesis. In this review,wediscuss the

multifunctionality of LEC1 during seed development and

recent findings that describe potential mechanisms by

which LEC1 can regulate distinct biological processes

across seed development.

LEC1 IS A KEY REGULATOR OF THE
MATURATION PHASE

LEC1 is a central regulator of seed development that

controls cellular processes that occur during the

morphogenesis and maturation phases. Initial insights

into LEC1 function were obtained through analyses of

loss-of-functionmutations of Arabidopsis LEC1 that were

identified in genetic screens for embryo lethal mutants

(Harada 2001). Several characteristics of lec1 mutants

suggest that the transcription factor regulates several

processes related to the maturation phase. First, LEC1 is

required for embryos to acquire desiccation tolerance.

Embryos with null mutations in LEC1 die, because they

do not survive maturation drying at the end of seed

development (Meinke 1992; Meinke et al. 1994; West

et al. 1994). Second, LEC1 is required for storage

macromolecule accumulation. Storage protein and lipid

accumulation are severely restricted in lec1 mutants

(Meinke 1992; Meinke et al. 1994; West et al. 1994). A

genome-wide comparison of mRNA populations in wild

type and lec1 mutant seeds showed that the major

difference in mRNA profiles is observed at the

maturation phase of seed development (Pelletier

et al. 2017). Genes involved with maturation processes,

such as protein and lipid storage, desiccation tolerance,

and seed dormancy, are downregulated in lec1 mutant

seeds. Third, postgerminative seedling development is

suppressed during seed development by LEC1. The

shoot apices of lec1 mutant embryos are activated and

possess leaf primordia, whereas wild type embryonic

shoot apices are inactive and do not initiate leaf

development (Meinke et al. 1994; West et al. 1994). One

interpretation of these findings is that the maturation

program prevents the precocious initiation of vegeta-

tive development during embryogenesis. Consistent

with this interpretation, genes expressed seedling-

specifically are prominently upregulated in lec1 mutant

embryos during the late stages of seed development

(Pelletier et al. 2017). Thus, pleiotropic effects of the lec1

mutation led to the conclusion that LEC1 is an essential
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regulator of the maturation phase (Meinke et al. 1994;
West et al. 1994; Lotan et al. 1998; Harada 2001; To et al.
2006; Braybrook and Harada 2008; Lepiniec et al. 2018).

LEC1’s role during the maturation phase was also
demonstrated in gain-of-function genetic experiments.
Ectopic expression of LEC1 in Arabidopsis results in the
upregulation of several genes involved in processes that
occur during the maturation phase, such as seed
storage proteins and lipid accumulation, desiccation
tolerance, and seed dormancy (Lotan et al. 1998). For

example, overexpression of LEC1 in developing seeds
results in the upregulation of key genes involved in fatty
acid biosynthesis and storage and an increase in lipid
content in a number of plant species (Kagaya et al. 2005;
Mu et al. 2008; Tan et al. 2011; Elahi et al. 2016; Pelletier
et al. 2017; Tang et al. 2018). These findings open the
possibility that manipulating LEC1 expression might be
useful to enhance the seed quality of crop plants.

The phenotypes induced by loss- and gain-of-function
mutations suggest that LEC1 is a key regulator of the

Figure 2. Modulation of LEC1 activity during seed development
(A) Heat map representations of LEC1 and L1LmRNA levels in embryo, endosperm, and seed coat subregions during
Arabidopsis seed development (top panel) and GA and ABA levels at the indicated stages of seed and
postgerminative development, with darker colors indicating higher relative hormone levels (bottom panel). mRNA
data are taken from Belmonte et al. (2013). (B)Mechanistic effects of GA and ABA on LEC1 activity. Morphogenesis
panel. Because bioactive GA levels are high, DELLA is degraded, releasing LEC1 to activate gene encoding auxin
biosynthetic enzymes, YUC4 and YUC10, although the subunits with which LEC1 interacts is not known. Maturation
panel. ABA levels are high, and the ABA-inducible transcription factor bZIP67 accumulates and forms a complexwith
a LEC1-NF-YC (or L1L-NF-YC) dimer. The complex binds ABRE-like DNA sequence motifs and activates maturation
genes, such as CRU and FAD3. Postgermination panel. DELLA is degraded, because GA levels become high prior to
and during germination and postgermination. PKL is released, resulting in an increase in H3K27me3 occupancy of
the LEC1 promoter and silencing of the LEC1 gene. An increase in VAL activity, which is thought to bemediated by GA,
also results in an increase in H3K27me3 occupancy.
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maturationphase.Genome-wide characterizationof LEC1
binding sites revealed that LEC1 can directly regulate
several genes involved in processes that occur during the
maturationphaseof developingArabidopsis and soybean
seeds (Junker et al. 2012; Pelletier et al. 2017).

LEC1 has been implicated to have played a critical

role in the evolution of the seed habit. In contrast to

plant lineages that do not produce seeds, seed plant

embryos undergo biochemical and physiological

changes during the maturation phase that allow them

to withstand maturation drying and metabolic quies-

cence and undergo the reinitiation of growth after

germination. The processes that occur during the

maturation phase account, in part, for the evolutionary

success of seed plants (Steeves 1983; Harada 2001;

Vicente-Carbajosa and Carbonero 2004). Thus, under-

standing the regulatory circuitry controlling seed

maturation could provide insights into the mechanisms

that underlie evolution of the seed habit. The require-

ment of LEC1 to regulate maturation processes opens

the possibility that LEC1may have played a critical role in

the evolution of the maturation phase and the seed

habit. Consistent with this possibility, phylogenetic

analysis revealed that LEC1-type genes, which are shared

among all spermatophytes, are first detected among

basal land plant lineages in lycophytes (Xie et al. 2008;

Kirkbride et al. 2013; Cagliari et al. 2014; Fang et al. 2017;

Han et al. 2017), suggesting that LEC1 originated at least

30 million years before the appearance of seed plants in

the fossil record. Based on their expression patterns,

LEC1orthologs have been suggested to play roles in

promoting desiccation tolerance and lipid accumulation

in Selaginella (lycophyte) species and storage macro-

molecule accumulation in reproductive organs of the

fern, Adiantumcapillus-veneris (Xie et al. 2008; Kirkbride

et al. 2013; Fang et al. 2017; Han et al. 2017). Further

studies of LEC1 function in basal plants could advance

our understanding of seed plant evolution.

BEYOND MATURATION � ROLES FOR
LEC1 IN OTHER ASPECTS OF SEED
DEVELOPMENT

Importance of LEC1 for embryo morphogenesis
Although LEC1 is a key regulator of the maturation
phase, several lines of evidence indicate that LEC1 also
acts as a regulator during the morphogenesis phase of

seed development. First, LEC1 is expressed within 24 h
after fertilization, suggesting that it functions at the
earliest stages of seed development (Figure 2A) (Lotan
et al. 1998). Second, LEC1 is required to maintain
embryonic suspensor identity early in seed develop-
ment. Thewild-type Arabidopsis suspensor is a transient
structure comprised of a single file of six to eight cells.
lec1mutant suspensors undergo abnormal cell divisions
and often consist of more than eight cells (Lotan et al.
1998). Furthermore, combining the lec1 mutation with
mutations in ABA INSENSITIVE3 (ABI3) or FUSCA3 (FUS3)
genes that encode other seed development regulators
results in polyembryony, in which a second embryo
proper forms from cells derived from proliferating
suspensor cells (Vernon and Meinke 1994; Lotan et al.
1998). Thus, LEC1 is required to suppress the embryo-
genic potential of the suspensor early in embryo
development. Third, LEC1 is required to specify cotyle-
don identity during embryogenesis (Meinke 1992;
Meinke et al. 1994; West et al. 1994). lec1 mutant
embryo cotyledons, unlike wild type, undergo a
heterochronic conversion in which they acquire leaf
traits, such as trichomes on their adaxial surfaces and a
cellular organization that is intermediate between
cotyledons and leaves (Meinke et al. 1994; West et al.
1994). Consistent with this interpretation, trichome
development is suppressed in plants overexpressing
LEC1 (Lotan et al. 1998; Huang et al. 2015a). Fourth, LEC1
regulates the expression of genes involved in embryo
morphogenesis, including those encoding the transcrip-
tion factors PHAVOLUTA and SCARECROW, and in auxin
biosynthesis in Arabidopsis and soybean embryos early
in seed development (Junker et al. 2012; Pelletier et al.
2017; Hu et al. 2018). Finally, a striking indication of
LEC1’s role in embryo morphogenesis is its ability to
induce somatic embryo development in vegetative
tissues of several plant species (Lotan et al. 1998; Lowe
et al. 2003; Yang and Zhang 2010; Ledwon and Gaj 2011;
Guo et al. 2013; Nic-Can et al. 2013; Orlowska et al. 2017).
The mechanisms that underlie LEC1’s ability to promote
somatic embryogenesis are not fully understood, but it
has been speculated that it acts to enhance embryo-
genic competence.

Involvement of LEC1 in photosynthesis and
chloroplast development during seed development
Embryos of many angiosperm taxa possess chloroplasts
that are highly shade adapted because of the light
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quality towhich they are exposed but that, nonetheless,

photosynthesize during embryo development (re-

viewedbyPuthur et al. 2013). In oilseeds, photosynthesis

generates oxygen, which is limited in the internal tissues

of the embryo, for mitochondria respiration, and it may

aid in recycling carbondioxide that is lostwith each cycle

of fatty acid elongation (Vigeolas et al. 2003; Rolletschek

et al. 2005; Allen et al. 2009). LEC1 has been implicated to

regulate photosynthesis and chloroplast biogenesis

during seed development. Arabidopsis lec1 mutants

have a paler green coloration than wild-type embryos,

suggesting that LEC1 promotes but is not absolutely

required for proper chloroplast biogenesis during

embryogenesis (Meinke 1992; West et al. 1994; Junker

et al. 2012; Pelletier et al. 2017). LEC1 also transcription-

ally activates the expression of representatives of most

genes encoding the light-reaction components of

photosystems I and II and of many other genes involved

in chloroplast biogenesis in Arabidopsis and soybean

embryos (Pelletier et al. 2017). These findings indicate a

role for LEC1 in controlling photosynthesis and chloro-

plast biogenesis during seed development.

LEC1 plays a role in controlling endosperm
development
mRNAprofilesofArabidopsis seeds revealedanextensive
overlap in gene activity between embryo and endosperm
subregions (Belmonte et al. 2013). Many of the same
genes that are involved inprocesses thatoccurduring the
morphogenesis andmaturationphases in the embryo are
also expressed in the endosperm. The findings that
chloroplasts and storage protein and oil bodies are
present not only in the embryobut also in the endosperm
support the functional significance of this overlap in gene
expression programs (Belmonte et al. 2013).

LEC1 is expressed in the endosperm of many plant
species, including Arabidopsis, maize, rapeseed, rice,
and soybean (Figure 2A) (Lotan et al. 1998; Huang et al.
2009; Belmonte et al. 2013; Zhan et al. 2015; Pelletier
et al. 2017; E et al. 2018). Moreover, Arabidopsis LEC1
directly activates genes that act both in the embryo and
endosperm in processes related to the morphogenesis
and maturation phases, suggesting the LEC1 regulates
aspects of endosperm development, although the lec1
mutant does not display obvious morphological defects
in endosperm (Meinke 1992; Meinke et al. 1994; Lotan
et al. 1998). Similarly, it was proposed that LEC1 can
control endosperm development in rice through its

interaction with AP2 transcription factors (Zhang and
Xue 2013; Xu et al. 2016).

Thus, substantial evidence indicates that LEC1’s role

in seed development extends beyond simply control of

the maturation phase. The ability of LEC1 to regulate

cellular processes during both the morphogenesis

and maturation phases and in distinct regions of the

seed demonstrates that LEC1 is a central regulator of

seed development.

TEMPORAL REGULATION OF LEC1
ACTIVITY BY HORMONES DURING SEED
DEVELOPMENT

LEC1 regulates distinct processes at different stages of
seed development, and its activity must be repressed
after germination to promote vegetative development
(Figure 2A, 2B). Thus, LEC1 activity must be highly
temporally regulated during plant development.

Recent findings provide insight into the mechanisms
by which LEC1 responds to the physiological cues that
govern seed development. For example, gibberellic acid
(GA) regulates LEC1 activity during seed development
(Hu et al. 2018). As shown in Figure 2A, bioactive GA
isoforms display a dynamic accumulation pattern,
achieving highest levels during the early stages of
seed development. In the absence of GAs, LEC1’s ability
to activate at least some of its target genes is repressed
through its interaction with DELLA proteins, which are
repressors of GA signaling pathways (Figure 2B).
Bioactive GAs promote the degradation of DELLA
proteins, releasing LEC1 to activate gene transcription.
GAs have been shown to release LEC1 to activate the
expression of YUCCA (YUC) genes involved in auxin
biosynthesis (Hu et al. 2018).

Abscisic acid (ABA) accumulation during the late
stages of seed development is at least partially
responsible for the onset of the maturation phase
and other developmental changes (Figure 2A)
(Finkelstein et al. 2002; Gutierrez et al. 2007;
Holdsworth et al. 2008; Nakashima and Yamaguchi-
Shinozaki 2013). Given the importance of LEC1 and ABA
in controlling the maturation phase, it is not surprising
that ABA has been shown to augment LEC1’s activation
of genes involved in maturation. For example, ABA
enhances the ability of LEC1 to activate the expression
of the storage protein gene, CRUCIFERIN (CRU), and
the lipid biosynthesis gene, FATTY ACID DESATURASE3
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(FAD3), by promoting the activity of ABA RESPONSIVE
ELEMENT BINDING (AREB) proteins, such as the
transcription factor, BASIC LEUCINE ZIPPER67
(bZIP67) (Figure 2B) (Yamamoto et al. 2009; Mendes
et al. 2013). It is not clear, however, if promotion results
from enhanced bZIP67 transcription or posttranslational
phosphorylation of bZIP67, as has been shown to occur
for another bZIP transcription factor, ABA INSENSI-
TIVE5 (Lopez-Molina et al. 2001; Nakashima et al. 2009).
The mechanistic relationship between LEC1 and bZIP
transcription factors will be discussed, but it is likely that
ABA modulates LEC1 function at least in part, by
inducing AREB protein activity.

The central role of LEC1 in promoting seed develop-
ment emphasizes a requirement to repress LEC1 activity
during vegetative development. For example, ectopic
LEC1 expression in seedlings results in the repression of
vegetative growth and the development of embryo-like
seedlings (Lotan et al. 1998). Two lines of evidence
indicate that chromatin conformation plays integral
roles in regulating LEC1 expression postgermination (Jia
et al. 2014; Pu and Sung 2015; Lepiniec et al. 2018). First,
PICKLE (PKL), a CHD3 chromatin remodeling factor,
negatively regulates LEC1 expression and, therefore,
embryonic programs during seedling development
(Ogas et al. 1999; Dean Rider et al. 2003; Li et al.
2005). The seedling roots of pkl mutants display
characteristics of embryos and accumulate storage
lipids and proteins normally found in seeds. This
phenotype results from the ectopic expression of
LEC1 and other maturation regulators in pkl seedlings
(Ogas et al. 1997; Henderson et al. 2004). Moreover, pkl
mutants show spontaneous development of somatic
embryos in postgerminative roots (Ogas et al. 1997).
Second, the VIVIPAROUS ABI3-LIKE (VAL) proteins, also
act to repress LEC1 activity during postgerminative
development. VAL1 and VAL2 genes, also known as
HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2
(HSI2) and HSI2-LIKE genes, respectively, are B3 domain
transcription factors that contain conserved CW and
PHDdomains frequently found in chromatin remodeling
factors (Suzuki et al. 2007; Tsukagoshi et al. 2007).
Monogenic val mutants do not display striking mutant
phenotypes, however, val1 val2 doublemutants develop
somatic embryos in shoot apical meristem regions of
germinating seedlings (Suzuki et al. 2007). Although not
normally active in wild-type seedlings, LEC1 is expressed
in val1 val2 seedlings after germination, indicating that

VAL1 and VAL2 inhibit embryonic development by
repressing the expression of LEC1 and other transcrip-
tional regulators of maturation during seedling growth
(Suzuki et al. 2007; Tsukagoshi et al. 2007).

Both PKL and VAL act epigenetically to repress LEC1
expression (Figure 2B) (Jia et al. 2014; Pu and Sung 2015;
Lepiniec et al. 2018).Repressionof seedmaturationgenes
by PKL is mediated through the trimethylation of the
lysine 27 residue of histone H3 (H3K27me3), a repressive
epigenetic mark, as indicated by the observation that pkl
mutants display reduced H3K27me3 occupancy on LEC1
postgermination (Zhang et al. 2008; Zhang et al. 2012).
Similarly, val1 val2mutants show reducedaccumulationof
H3K27me3 and increased accumulation of active histone
marks, such as histone H3 lysine 4 trimethylation,
histone H3 acetylation, and histone H4 acetylation, in
the promoter and coding regions of LEC1 during seed
germination (Zhou et al. 2013). VAL1 and VAL2 interact
with HISTONE DEACETYLASE19 and 6, respectively, to
inhibit LEC1 activity (Zhou et al. 2013; Chhun et al. 2016).
VAL2 binds with the promoter and coding/intron regions
of LEC1 to recruit HDA6 and suppress LEC1 activity during
seed germination.

The concerted actions of PKL and VAL1/VAL2 empha-
size the importanceof repressing theactivitiesofLEC1and
other maturation regulators and, consequently, the
embryonic program during vegetative development.
GAs have been proposed to play an important role in
controlling PKL and VAL activities (Figure 2B) (Ogas et al.
1997;Ogaset al. 1999; Suzuki et al. 2007; Zhanget al. 2014).
An increase inGA levels prior togermination is responsible
for breaking seed dormancy and promoting seed
germination. In pkl mutant and val1 val2 double mutant
seedlings, the development of embryo-like structures is
enhanced by GA biosynthesis inhibitors (Ogas et al. 1997;
Suzuki et al. 2007). In addition, DELLA proteins interact
with PKL to negatively regulate PKL activity (Figure 2B)
(Zhang et al. 2014). Thus, GA induced degradation of
DELLA proteins appears to activate PKL to repress
embryonic gene expression after germination. The
mechanism by which GAs influence VAL function remains
to be determined. Nevertheless, the GA-mediated
repression of LEC1 and other maturation regulators by
PKL and VAL1 provides insight into the transition between
seed and vegetative development in spermatophytes.

Together, these findings indicate that hormones play
important roles in modulating LEC1 activity during seed
development in response to physiological changes.
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LEC1 REGULATES SEED DEVELOPMENT
DIRECTLY AND INDIRECTLY THROUGH
THE ACTIVATION OF OTHER KEY
TRANSCRIPTION FACTORS

Genome-wide characterization of LEC1 occupancy

coupled with gene expression analyses indicates that

LEC1 can directly regulate many genes involved in the

processes that occur during seed development (Junker

et al. 2012; Pelletier et al. 2017). For instance, LEC1

directly regulates genes encoding enzymes involved in

hormone biosynthesis and seed storagemacromolecule

accumulation. These studies also show that LEC1’s

involvement in controlling distinct processes during

seed development may reflect, in part, its ability to

regulate different sets of downstream transcription

factors.

LEC1’s function early in seed development is

mediated, at least in part, through its direct activation

of transcription factors involved in morphogenetic

processes (Junker et al. 2012; Pelletier et al. 2017; Hu

et al. 2018). For example, LEC1 directly regulates the

transcription of the HD-ZIPIII transcription factors,

PHABULOSA and PHAVOLUTA, that have been charac-

terized as master regulators of apical fate early in

embryogenesis and of SCARECROW, a key regulator of

root architecture (Di Laurenzio et al. 1996; Smith and

Long 2010; Pelletier et al. 2017). Moreover, LEC1

regulates genes involved in the biosynthesis of auxin,

a hormone that plays key roles in embryonic pattern

formation (Junker et al. 2012). Thus, LEC1 regulates the

establishment of embryo body pattern by controlling

the expression of genes involved in embryonic axis

differentiation.
Among genes directly regulated by LEC1 are the

“AFL” B3 domain transcription factors, ABI3, FUS3, and
LEAFY COTYLEDON2 (LEC2), which are all key regulators
of seed maturation (Braybrook and Harada 2008;
Santos-Mendoza et al. 2008; Boulard et al. 2017). Single
mutants for each gene display phenotypic similarities to
lec1 mutants and to each other (Finkelstein and
Somerville 1990; Meinke 1992; Keith et al. 1994;
Meinke et al. 1994; West et al. 1994; Harada 2001).
The lack of redundancy among AFL genes indicates that
they play similar though not identical roles during seed
maturation. For example, abi3 and lec1mutants but not
fus3 and lec2 mutants have reduced sensitivity to
exogenous ABA (To et al. 2006). lec1, abi3 and fus3

mutants are embryo lethal mutants, because they are
desiccation intolerant, whereas lec2 mutant embryos
display only partial desiccation intolerance (Nambara
et al. 1995; Harada 2001). LEC1 appears to act upstream
of ABI3, FUS3, and LEC2 in that ABI3 and FUS3 expression
is reduced in lec1 mutants, and overexpression of LEC1
results in increased ABI3 and FUS3 expression in
Arabidopsis seeds (Parcy et al. 1997; Kagaya et al.
2005; To et al. 2006; Mu et al. 2008; Pelletier et al. 2017).
Moreover, Arabidopsis ABI3, FUS3, and LEC2 are directly
transcriptionally regulated by LEC1 (Pelletier et al. 2017).

Many maturation genes that are direct targets of

LEC1 are also direct targets of ABI3 and FUS3 (Monke

et al. 2012; Wang and Perry 2013; Pelletier et al. 2017).

Thus, it appears that LEC1 activates both ABI3 and

FUS3, and all three transcription factors act to

promote maturation gene transcription during seed

development. This type of network architecture is

known as a feed-forward loop that can accelerate the

response time of target gene expression following

induction (Mangan and Alon 2003). Another potential

example of a feed-forward loop is the relationship

between LEC1 and WRINKLED1 (WRI1), another

transcription factor that plays a key role in the

maturation phase. WRI1 is a direct target of LEC1, and

it is thought to directly regulate genes involved with

fatty acid accumulation in Arabidopsis seeds that are

also directly regulated by LEC1 (Baud et al. 2007; To

et al. 2012; Pelletier et al. 2017). Thus, LEC1 works in

concert with WRI1 to control fatty acid biosynthesis

during seed development.

LEC1 indirectly controls seed development by

regulating the expression of transcription factors that

control independent developmental programs during

seed development. However, LEC1’s ability to directly

regulate many of the structural genes in the regulatory

network that are, in turn, regulated by its downstream

transcription factor suggests a feed-forward mecha-

nism of regulation that reinforces specific gene

expression programs during seed development.

LEC1 FUNCTION IS MODULATED BY
INTERACTIONS WITH OTHER
TRANSCRIPTION FACTORS

The finding that LEC1 regulates distinct processes
at different stages of development prompted the
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question of how a single transcription factor can control

different sets of genes. Genetic analyses suggested that

LEC1 may interact synergistically with other transcrip-

tion factors to regulate different processes during seed

development (Parcy et al. 1997; To et al. 2006). Recent

studies suggest that LEC1 acts sequentially during seed

development to respond to different developmental

signals by interacting with different combinations of

transcription factors to alter the transcriptional speci-

ficity of LEC1 (Pelletier et al. 2017). In this section, we

discuss LEC1’s interactions with other transcription

factors during seed development.

LEC1 as a subunit of a Nuclear Factor-Y transcription
factor
LEC1 is a novel NF-YB subunit of the NF-Y complex, a
transcription factor that is conserved among eukar-
yotes and binds the CCAATDNAmotif (Lotan et al. 1998;
Calvenzani et al. 2012; Dolfini et al. 2012). In addition to
NF-YB, the NF-Y complex is comprised of two other
subunits, NF-YA and NY-YC (Petroni et al. 2012; Zhao
et al. 2016). Different from other organisms, such as
animals and yeast which contain only one gene for each
subunit, plants possess NF-Y subunit gene families that
consist of 8 to 14 members (Petroni et al. 2012; Zhao
et al. 2016). This diversity of subunits offers the
potential for the functional specialization of different
combinations of NF-Y subunits (Siefers et al. 2009;
Laloum et al. 2013). Seed plants possess two types of
NF-YB subunits: the non-LEC1 type with B domains that
are conserved across eukaryotes and the LEC1-type
that, in Arabidopsis, consists of LEC1 (NF-YB9) and its
paralog, LEC1-LIKE (L1L, NF-YB6), although LEC1 and L1L
exhibit distinct accumulation patterns (Figure 2A)
(Kwong et al. 2003b). LEC1-type subunits confer LEC1
activity whereas the non-LEC1 subunits do not (Kwong
et al. 2003a; Lee et al. 2003). The B domains of LEC1-type
subunits share sequence similarity with non-LEC1 type
subunits, but they also possess unique amino acid
residues. These unique residues are responsible for
conferring LEC1 activity only to NF-Y complexes
containing the LEC1-type subunits (Lee et al. 2003).
The LEC1-type NF-YB subunits are found primarily in
seed plants although they appear to have originated in
land plant lineages in lycophytes (Xie et al. 2008;
Kirkbride et al. 2013; Cagliari et al. 2014). Thus, non-LEC1
type and LEC1 type NF-YB subunits appear to have
fundamentally different function.

The ability of NF-Y complexes containing non-LEC1-
type NF-YB subunits to bind the CCAAT motif and to
regulate gene transcription has been extensively
studied in yeast, mammals and plants (Dolfini et al.
2012; Zhao et al. 2016; Myers and Holt 2018). The initial
step in NF-Y complex formation involves dimerization
between NF-YB and NF-YC through their histone-fold
domains. NF-YC subunits possess nuclear localization
sequences, whereas NF-YB subunits do not. Therefore,
NF-YB/NF-YC dimers localize to the nucleus (Frontini
et al. 2002; Kahle et al. 2005). The nuclear localized
NF-YA subunit binds with the NF-YB/NF-YC dimer to
form a functional transcription factor that binds the
CCAAT DNAmotif. All three subunits, particularly NF-YA,
confer DNA binding specificity to the complex (Sinha
et al. 1996; Zemzoumi et al. 1999).

Despite their difference from non-LEC1 subunits,

both Arabidopsis LEC1 and L1L form functional NF-Y

complexes, as diagramed in Figure 3 (Calvenzani et al.

2012; Gnesutta et al. 2017b). Assembly of the LEC1 NF-Y

complex appears to occur similarly with non-LEC1 NF-Y

complexes in that rice LEC1 preferentially localizes to

tobacco epidermal cells nuclei only when a rice NF-YC

subunit is coexpressed, suggesting that LEC1 lacks a

nuclear localization sequence (E et al. 2018). Protein

crystallography studies predict that the structure of the

NF-Y complex containing L1L is very similar to NF-Y

complexes from animals, and NF-Y complexes contain-

ing LEC1 or L1L bind CCAAT DNAmotifs (Calvenzani et al.

2012; Nardini et al. 2013; Gnesutta et al. 2017b).

Consistent with this finding, the CCAAT DNA motif is

overrepresented in the promoter of several genes that

are regulated by LEC1 during the early stages of embryo

development in Arabidopsis and soybean (Pelletier et al.

2017). Thus, it is likely that LEC1 promotes transcription

as a functional NF-Y complex during seed development.

LEC1 interactions with other transcription factors
Genome-wide analysis of LEC1 binding sites in the
upstream regions of Arabidopsis and soybean genes
that are transcriptionally regulated by LEC1 revealed a
distinct set of DNA sequence motifs that were enriched
in their promoter regions (Pelletier et al. 2017). The
CCAAT DNA motif is enriched in genes that are LEC1
regulated early in seed development. By contrast, LEC1
regulated genes expressed at later stages of seed
development were overrepresented for DNA motifs
that resemble the G-Box (CACGTG), ABRE-like ((C/G/T)
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ACGTG(G/T)(A/C)), RY (CATGCA) and BPC1 ((A/G)GA(A/

G)AG(A/G)(A/G)A) cis-regulatory elements (Pelletier

et al. 2017). Because NF-Y complexes bind CCAAT DNA

motifs, it is hypothesized that LEC1 can interact with

several other transcription factors and that these

interactions specify which set of genes are regulated

by LEC1 (Pelletier et al. 2017). Interactions between NF-Y

subunits and other transcription factors have been

reported extensively for plants and animals, and these

interactions are important to specify the activity of

these other transcription factors (Dolfini et al. 2012;

Zhao et al. 2016; Myers and Holt 2018). Here, we discuss

interactions between LEC1 and other transcription

factors.
Studies of the B-BOX-type zinc finger transcription

factor, CONSTANS (CO) that controls flowering in
plants, provide insight into a potential mechanism by
which the transcriptional specificity of LEC1 may be
modulated. CO interacts with a NF-YB/NF-YC dimer to

form a functional transcription factor by essentially

replacing NF-YA in the NF-Y complex (Gnesutta et al.

2017a). Given that the NF-YA subunit participates in

determining the DNA binding specificity of NF-Y

complexes, the CO/NF-YB2/NF-YC3 complex does not

bind the CCAAT DNAmotif, but rather it binds the CORE

element (CCACA) in the promoter regions of the CO

target gene, FLOWERING LOCUS T. Interestingly, CO

competes with NF-YA subunits for the NF-YB/YC dimer

(Gnesutta et al. 2017a).
By analogy to the CO/NF-YB/NF-YC complex, the

LEC1/NF-YC dimer appears to interact with other
transcription factors tomodulate LEC1 activity as shown
in Figure 3. Consistentwith the finding that G-boxmotifs
are enriched in LEC1 binding regions in LEC1 target gene
promoters, the basic leucine zipper transcription factor,
bZIP67, has been shown to interact with the L1L/NF-YC2
dimer (Yamamoto et al. 2009). The LEC1/NF-YC2/bZIP67
complex binds the ABRE DNA motif, which has a G-box

Figure 3. LEC1 regulates distinct processes during seed development through its interaction with other
transcription factors
Binding of LEC1 with NF-YC enables transport of the dimer into the nucleus where it can interact with the indicated
transcription factors, dependent on developmental stage. NF-YC subunits marked with a question mark indicate
that NF-YC has not been shown to be required for the interaction of LEC1 with the transcription factor. In many
cases, L1L may replace LEC1 in the complexes. The DNA sequence motif bound by TCL2 is not known.
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core, but not the CCAAT DNAmotif, in the promoters of
genes involved in the maturation phase, such as
CRUCIFERIN C, FATTY ACID DESATURASE3, and SUCROSE
SYNTHASE 2 (Yamamoto et al. 2009; Mendes et al. 2013).
Similar to the CO/NF-YB/NF-YC complex, NF-YA strongly
inhibits the activity of the LEC1 complex with CRUCI-
FERIN C, suggesting a competition between NF-YA and
bZIP67 for the LEC1/NF-YC dimer (Yamamoto et al.
2009).

LEC1 also interacts with LEC2 (Figure 3) (Baud et al.

2016; Boulard et al. 2018). LEC2 is a B3 transcription

factor that together with other B3 proteins, ABI3 and

FUS3, regulates several processes during the matura-

tion phase (Devic and Roscoe 2016; Lepiniec et al. 2018).

LEC1, LEC2 and ABI3 synergistically promote the

expression of the OLEOSIN1 gene through RY and

ABRE DNA motifs (Baud et al. 2016). Thus, LEC1’s ability

to control the maturation phase likely occurs through

interactions with B3 and bZIP transcription factors that

accumulate during the late stages of seed development.

LEC1 also interacts with other transcription factors

to regulate diverse development processes (Figure 3).

For example, LEC1 interacts with PHYTOCHROME

INTERACTING FACTOR1 (PIF1) that is important for

the expression of skotomorphogenesis genes through

the G box element (Junker et al. 2012; Huang et al.

2015b). LEC1 also interacts with TRICHOMELESS2 (TCL2)

to repress the expression of genes involved with

trichome development during embryogenesis (Huang

et al. 2015a).

Together, the ability of LEC1 to interact with many
transcription factors provides potential mechanisms to
explain how LEC1 can regulate distinct gene sets at

different stages of seed development. Defining all of
the transcription factors that interact with LEC1 during
seed development and their impact on LEC1 activity
could provide useful insights into the multifunctionality
of LEC1 during seed development.

LEC1 AS A PIONEER TRANSCRIPTION
FACTOR

The transition from the morphogenesis to the matura-

tion phase represents a reprogramming of cellular

identity. Cellular reprogramming in animals is often

mediated, in part, by pioneer transcription factors that

are involved in the initial steps that allow silenced genes

to become competent for transcription (Guo andMorris

2017). Pioneer transcription factors have the capacity to

bind compacted or “closed” chromatin and initiate

chromatin remodeling, resulting in an increase in target

site accessibility and facilitating the recruitment of

other transcription factors to genes in the newly

opened chromatin (reviewed by Zaret and Carroll

2011; Mayran and Drouin 2018; Sartorelli and Puri 2018).

LEC1 is the first pioneer transcription factor to be

identified in plants based on its involvement in

activating FLOWERING LOCUS C (FLC) (Figure 4) (Tao

et al. 2017). FLC is a flowering repressor that undergoes

epigenetic silencing during vernalization, resulting in

the transition from vegetative to reproductive develop-

ment (reviewed by Andres and Coupland 2012;

Whittaker and Dean 2017). After plants flower, FLC

remains silenced and in a repressed chromatin state,

and it is maintained as such through gametogenesis

(Sheldon et al. 2008). However, FLC expression must be

Figure 4. LEC1 is a pioneer transcription factor that promotes FLC transcription during embryogenesis
An NF-Y complex containing LEC1 binds the CCAAT DNA sequence motif in the FLC promoter in a closed chromatin
conformation, as indicated by its occupancy by H3K27me3. The LEC1 NF-Y complex works through EFS and the SWR1
complex to initiate the establishment of an active chromatin state as indicated by occupancy of the active chromatin
mark, H3K36me3.
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reestablished to repress flowering prior to vernaliza-

tion. As shown in Figure 4, LEC1 promotes the initial
establishment of an active chromatin state at FLC in
embryos (Tao et al. 2017). LEC1 binding at the FLC
promoter is essential to engage EARLY FLOWERING IN
SHORT DAYS (EFS) and the SWR1 complex to enhance
chromatin accessibility and facilitate the recruitment of
active histone marks on the FLC promoter, although the
mechanistic relationship between LEC1 and the chro-
matin remodelers remains to be determined.

The characterization of LEC1 as a pioneer transcrip-
tion factor opens the possibility that LEC1 may serve a
similar function during seed development. Thus, LEC1
may bind compacted chromatin and promote chroma-
tin conformational changes that allow other transcrip-
tion factors to bind, in part, through their interactions
with LEC1. Further analysis of the relationship between
LEC1 and epigenetic changes that occur during seed
development could provide insights into LEC1 role as a
pioneer transcription factor.

CONCLUSION AND PERSPECTIVES

In this review, we have summarized recent findings that
emphasize the role of LEC1 as a central regulator of seed
development. LEC1 controls distinct processes at
different stages of development. Therefore, its activity
must sequentially regulate different sets of genes
during seed development. The hormones GA and ABA
may be involved in modulating LEC1 function in
response to different physiological cues.

How does LEC1 regulate diverse sets of genes? First,
LEC1 acts indirectly to regulate cellular processes during
seed development by activating genes encoding
transcription factors controlling structural genes that
underlie these processes. In some cases, LEC1 also
directly activates the same structural genes that are
regulated by its downstream transcription factors,
establishing a feed-forward loop that potentially
promotes gene expression. LEC1 also interacts with
different transcription factors at different stages of
development, and the concerted actions of these

transcription factor complexes may specify the particu-

lar set of genes that are activated. Moreover, the recent

finding that LEC1 acts as a pioneer transcription factor

provides potential insight into understanding LEC1

function to promote the activation of different gene

sets during seed development.
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